Quasi-steady-state approximations derived from the stochastic model of enzyme kinetics

نویسندگان

  • Hye-Won Kang
  • Wasiur R. KhudaBukhsh
  • Heinz Koeppl
  • Grzegorz A. Rempala
چکیده

In this paper we derive several quasi steady-state approximations (QSSAs) to the stochastic reaction network describing the Michaelis-Menten enzyme kinetics. We show how the different assumptions about chemical species abundance and reaction rates lead to the standard QSSA (sQSSA), the total QSSA (tQSSA), and the reverse QSSA (rQSSA) approximations. These three QSSAs have been widely studied in the literature in deterministic ordinary differential equation (ODE) settings and several sets of conditions for their validity have been proposed. By using multiscaling techniques introduced in [1, 2] we show that these conditions for deterministic QSSAs largely agree with the ones for QSSAs in the large volume limits of the underlying stochastic enzyme kinetic network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enzyme Kinetics Far From the Standard Quasi-Steady-State and Equilibrium Approximations

Analytic approximations of the time-evolution of the single enzyme-substrate reaction are valid for all but a small region of parameter spsce in the positive initial enzyme-initial substrate concentration plane. We find velocity equations for the substrate decomposition and product formation with the aid of the total quasi-steady-state approximation and an aggregation technique for cases where ...

متن کامل

The Kinetics of Enzyme Mixtures

Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme.  For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present.  Based...

متن کامل

Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method

The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...

متن کامل

Two classes of quasi-steady-state model reductions for stochastic kinetics.

The quasi-steady-state approximation (QSSA) is a model reduction technique used to remove highly reactive species from deterministic models of reaction mechanisms. In many reaction networks the highly reactive intermediates (QSSA species) have populations small enough to require a stochastic representation. In this work we apply singular perturbation analysis to remove the QSSA species from the...

متن کامل

Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm

Biochemical dynamics are often determined by series of single molecule events such as gene expression and reactions involving protein concentrations at nanomolar concentrations. Molecular fluctuations, consequently, may be of biological significance. For example, heterogeneity in clonal populations is believed to arise from molecular fluctuations in gene expression. A realistic description, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017